Anterior gradient 2 is a binding stabilizer of hypoxia inducible factor-1α that enhances CoCl2-induced doxorubicin resistance in breast cancer cells
نویسندگان
چکیده
Hypoxia inducible factor-1α (HIF-1α) is associated with human breast cancer chemoresistance. Various reports have suggested that multiple pathways are involved in HIF-1α induction and that the molecular mechanisms regulating HIF-1α-induced chemoresistance are still not fully understood. Here, we report that anterior gradient 2 (AGR2), a proposed breast cancer biomarker, is an essential regulator in hypoxia-induced doxorubicin resistance through the binding and stabilization of HIF-1α. Our results show that knockdown of AGR2 in MCF-7 cells leads to the suppression of HIF-1α-induced doxorubicin resistance, whereas elevated levels of AGR2 in MDA-MB-231 cells enhance HIF-1α-induced doxorubicin resistance. AGR2 expression, in turn, is upregulated by the hypoxic induction of HIF-1α at both translational and transcriptional levels via a hypoxia-responsive region from -937 to -912 bp on the AGR2 promoter sequence. By specific binding to HIF-1α, the increased level of intracellular AGR2 stabilizes HIF-1α and delays its proteasomal degradation. Finally, we found that AGR2-stabilized HIF-1α escalates multiple drug resistance protein 1 (MDR1) mRNA levels and limits doxorubicin intake of MCF-7 cells, whereas MCF-7/ADR, a doxorubicin resistant cell line with deficient AGR2 and HIF-1α, acquires wild-type MDR1 overexpression. Our findings, for the first time, describe AGR2 as an important regulator in chemical hypoxia-induced doxorubicin resistance in breast cancer cells, providing a possible explanation for the variable levels of chemoresistance in breast cancers and further validating AGR2 as a potential anti-breast cancer therapeutic target.
منابع مشابه
The hypoxia-mimetic agent CoCl2 induces chemotherapy resistance in LOVO colorectal cancer cells
Hypoxia, which is an important factor that mediates tumor progression and poor treatment response, is particularly associated with tumor chemoresistance. However, the molecular mechanisms underlying hypoxia-induced colorectal cancer chemoresistance remain unclear. The present study aimed to explore the mechanism underlying hypoxia‑induced chemotherapy resistance in LOVO colorectal cancer cells....
متن کاملBlockade of Hypoxia: The Impact on Tumor Growth in an Experimental Tumor Model
Background: Tumor microenvironment is an active factor participating in immunoregulation, thereby preventing immunosurveillance and limiting the efficacy of anticancer therapies. Hypoxia as a major characteristic of solid tumors causes the expression of Hypoxia-Inducible Factor-1α (HIF-1α). This is a transcription factor that mediates hypoxic responses of tumor cells and involves in the express...
متن کاملHypoxia negates hyperglycaemia-induced chemo-resistance in breast cancer cells: the role of insulin-like growth factor binding protein 2
BACKGROUND Women who suffer from breast cancer and type II diabetes with associated hyperglycaemia respond less well to chemotherapy. We have shown that hyperglycaemia induces resistance to chemotherapy through upregulation of fatty acid synthase (FASN) in breast cancer cells and increased insulin-like binding protein 2 (IGFBP-2) in prostate cancer cells. As a tumour develops the tumour mass ca...
متن کاملRegulation of COX-2 expression and epithelial-to-mesenchymal transition by hypoxia-inducible factor-1α is associated with poor prognosis in hepatocellular carcinoma patients post TACE surgery
Currently, it is not entirely clear whether hypoxia-inducible factor-1α (HIF-1α) is involved in the regulation of COX-2 expression and epithelial-to-mesenchymal transition (EMT), and whether these events affect the prognosis of hepatocellular carcinoma (HCC) patients treated with transcatheter arterial chemoembolization (TACE). In this report the relationship between HIF-1α and COX-2 protein ex...
متن کاملTumor cells upregulate normoxic HIF-1α in response to doxorubicin.
Hypoxia-inducible factor 1 (HIF-1) is a master transcription factor that controls cellular homeostasis. Although its activation benefits normal tissue, HIF-1 activation in tumors is a major risk factor for angiogenesis, therapeutic resistance, and poor prognosis. HIF-1 activity is usually suppressed under normoxic conditions because of rapid oxygen-dependent degradation of HIF-1α. Here, we show...
متن کامل